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1. Calculate the Fourier transform of the following functions (the residue theorem might be useful
for a few cases, but not in all of them):

(a) f(x) =
1

x2 − 2x+ 2
Hint: If you want, you can avoid lengthy computations by using the properties of the
Fourier transform and the fact that, as we computed in class last week,

F [
1

x2 + 1
](a) =

√
π

2
e−|a|.

(b) f(x) =
x

x4 + 1
.

(c) f(x) = e−|x| (in this case, you should get f̂(a) =
√

2
π

1
a2+1

; there are a few di�erent ways

to obtain this result).

2. Let f : R→ C be a piecewise continuous function satisfying
� +∞

−∞
|f(x)| dx < +∞ and

� +∞

−∞
|x · f(x)| dx < +∞.

Show that the Fourier transform of g(x) = x · f(x) is well-de�ned and satis�es

ĝ(a) = i
d

da
f̂(a).

Use this result to calculate the Fourier transform of f(x) = xe−|x|.

3. Consider the following ordinary di�erential equation:

y′′(x) + 2y′(x) + 5y(x) = e−|x|, x ∈ R. (1)

(a) By considering the Fourier transform of the above expression, �nd an expression for
F [y](a).

(b) By considering the inverse Fourier transform of the expression for F [y](a), determine a
solution y(x) to (1).

Remark. The equation (1) is 2nd order and has no initial or boundary value conditions, so
one would expect to have a 2-dimensional space of solutions, not just a single solution. This
is indeed true; however, among the solutions in this 2 dimensional space, only one goes to 0
as x → ±∞; this is the only one for which the Fourier transfor F [y] is well-de�ned (since for
the others the corresponding integral does not converge), and hence, this is exactly the one
which is �selected� by our method above. In other words, applying the Fourier transform to (1)
implicitly requires assuming that y(x) → 0 as x → ±∞ in order for the transform to be well
de�ned, and this corresponds to imposing two boundary conditions at x = ±∞.
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4. Use the various properties of the Fourier transform (i.e. about translations, re-scalings, fre-
quency shifts etc, as well as the property proved in Ex. 2) together with the table of Fourier
transforms given at the end of the sheet to calculate the Fourier transforms of the following
functions:

(a) f(x) =
eix

β2 + σ2x2
, β, σ ∈ R \ {0}.

(b) g(x) = x2e−β2x2
, β ∈ R \ {0}.

(c) h(x) =
x2 − 2x+ 1

(x2 − 2x+ 2)2
.

5. Using the properties of the Laplace transform that we saw in class, show that the indicated
γ0 ∈ R is an abscissa of convergence and compute the Laplace transforms of the following
functions f : [0,+∞) → C:

(a) f(t) = (t+ 1)3, γ0 = 0.

(b) f(t) = sin(ωt) (where ω ∈ R), γ0 = 0.

(c) f(t) = t2 cos(ωt) (where ω ∈ R), γ0 = 0.

(d) f(t) = cosh(ωt) (where ω ∈ R), γ0 = |ω|.

6. For two piecewise continuous functions f, g : [0,+∞) → C, we de�ne their convolution f ∗ g :
[0,+∞) → C by the relation

f ∗ g(t) .
=

� t

0

f(s)g(t− s) ds.

(a) Show that the above de�nition coincides with the usual de�nition of the convolution of
f, g : R→ C if we assume that f, g are extended on (−∞, 0) by the requirement that they
are identically 0 there.

(b) Show that the Laplace transform of f ∗ g satis�es

L[f ∗ g](z) = L[f ](z) · L[g](z)

for any z ∈ C for which L[f ] and L[g] are well-de�ned (Hint: Write down the expression
for the Laplace transform and use the (trivial) identity e−zt = e−zse−z(t−s)).

Solutions

Problem 1

Calculate the Fourier transform of the following functions:
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(a) f(x) = 1
x2−2x+2

We note:
x2 − 2x+ 2 = (x− 1)2 + 1

Thus:

f(x) =
1

(x− 1)2 + 1

Given that:

F
[

1

x2 + 1

]
(a) =

√
π

2
e−|a|

Using the translation property of the Fourier transform (namely that F [f(x−x0)](a) = e−iax0F [f(x)](a)):

F [f(x)](a) = e−ia

√
π

2
e−|a|

Answer:

f̂(a) =

√
π

2
e−iae−|a|

(b) f(x) = x
x4+1

Actually the Fourier transform of f was computed in Exercise 8.2 (I was planning to give a slightly
di�erent combination of polynomials for this exercise sheet, but I mistakenly gave the same; the
method of calculation would have been the same in any case). The Fourier transform of f

(c) f(x) = e−|x|

The Fourier transform is computed by splitting the integral:

f̂(a) =
1√
2π

(� +∞

−∞
e−iaxe−|x| dx

)
=

1√
2π

(� ∞

0

e(−ia−1)x dx+

� 0

−∞
e(−ia+1)xdx

)
We can easily calculate both integrals (note that the corresponding boundary terms at x = ±∞
vanish): � ∞

0

e−(1+ia)xdx =
1

1 + ia
,

� 0

−∞
e(1−ia)xdx =

1

1− ia

Thus:

f̂(a) =
1√
2π

(
1

1 + ia
+

1

1− ia

)
=

1√
2π

2

1 + a2

Answer:

f̂(a) =

√
2

π

1

1 + a2
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Problem 2

Fourier transform of g(x) = xf(x)

Proof

By de�nition:

ĝ(a) =
1√
2π

� +∞

−∞
xf(x)e−iaxdx

Note:

xe−iax = i
d

da
e−iax

Thus:

ĝ(a) =
1√
2π

� +∞

−∞
xf(x)e−iaxdx

=
1√
2π

� +∞

−∞
f(x)i

d

da

(
e−iax

)
dx

= i
d

da

(
1√
2π

� +∞

−∞
f(x)e−iaxdx

)
= i

d

da

(
f̂(a)

)
.

Application to the case of xe−|x|

We have from Problem 1(c): If h(x) = e−|x|,

ĥ(a) =

√
2

π

1

1 + a2

Thus:
d

da

(
1

1 + a2

)
=

−2a

(1 + a2)2

Thus: If g(x) = xe−|x| = x h(x),

ĝ(a) = i
d

da
ĥ(a) = i

√
2

π

(
−2a

(1 + a2)2

)
= −i

√
8

π

a

(1 + a2)2
.

Problem 3

Solve the di�erential equation:

y′′(x) + 2y′(x) + 5y(x) = e−|x|
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(a) Find ŷ(a)

Apply the Fourier transform to each term separately. Recall:

� F [y(x)](a) = ŷ(a)

� F [y′(x)](a) = iaŷ(a)

� F [y′′(x)](a) = −a2ŷ(a)

Thus, taking Fourier transforms term-by-term:

−a2ŷ(a) + 2iaŷ(a) + 5ŷ(a) = F [e−|x|](a)

Since:

F [e−|x|](a) =

√
2

π

1

1 + a2
,

we obtain: (
−a2 + 2ia+ 5

)
ŷ(a) =

√
2

π

1

1 + a2

Thus:

ŷ(a) =

√
2

π

1

(1 + a2)(−a2 + 2ia+ 5)

(b) Find y(x)

Using the de�nition of the inverse Fourier transform, we have:

y(x) =
1√
2π

� +∞

−∞
e+iaxŷ(a) da =

1

π

� +∞

−∞
eiax

1

(1 + a2)(−a2 + 2ia+ 5)
da. (2)

The above is again an integral of the form
� +∞
−∞

p(a)
q(a)

eiax da with deg(q) ⩾ deg(p) + 2, which we have
seen how to compute in our applications of the residue theorem. In particular, since

(1 + a2)(−a2 + 2ia+ 5) = −(a− i)(a+ i)(a− 2− i)(a+ 2− i),

the poles of 1
(1+a2)(−a2+2ia+5)

are simple and lie at a = ±i, a = ±2+ i. Therefore, in order to compute
the integral

� +∞

−∞
eiax

1

(1 + a2)(−a2 + 2ia+ 5)
da = lim

R→+∞

� +R

−R

eiax
1

(1 + a2)(−a2 + 2ia+ 5)
da,

we distingusih two cases:
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� When x ⩾ 0 (in which case eiax is bounded for Im(a) ⩾ 0), we compute the integral

� +R

−R

eiax
1

(1 + a2)(−a2 + 2ia+ 5)
da

by forming a closed loop using a half circle of radius R in the upper half plane for a. In the
upper half plane, the poles of the integrand are i, 2 + i and −2 + i. In this case, as R → +∞,
we get

� +∞

−∞
eiax

1

(1 + a2)(−a2 + 2ia+ 5)
da

=2πi

(
Resz=i

(
eizx

1

(1 + z2)(−z2 + 2iz + 5)

)
+Resz=2+i

(
eizx

1

(1 + z2)(−z2 + 2iz + 5)

)

+Resz=−2+i

(
eizx

1

(1 + z2)(−z2 + 2iz + 5)

))
.

Recall from Exercise 4 in Series 7 that, in the case of a function of the form g(z)
h(z)

, where h(z0) ̸= 0

and g(z) has a simple zero at z0, we have

Resz=z0

(
g(z)

h(z)

)
=

g(z0)

h′(z0)
.

Using the above formula, we can easily compute the residues, thus yielding:

� +∞

−∞
eiax

1

(1 + a2)(−a2 + 2ia+ 5)
da

= 2πi

(
−1

8
ie−x +

(
− 1

32
+

1

32
i

)
e(−1+2i)x +

(
1

32
+

1

32
i

)
e(−1−2i)x

)
=

π

8
e−x (2− cos(2x) + sin(2x)) .

� When x < 0 (in which case eiax is bounded for Im(a) ⩽ 0), we compute the integral

� +R

−R

eiax
1

(1 + a2)(−a2 + 2ia+ 5)
da

by forming a closed loop using a half circle of radius R in the lower half plane for a.

Important remark. When closing the loop in the lower half plane, if we give our curve
a positive (i.e. counterclockwise) orientation, then the part of the curve on the real line is
parametrized from +R to −R (make a drawing to verify this). Thus, the original integral
(which corresponds to a parametrization going from −R to +R is minus the result obtained
from the positively oriented loop. This explains the − sign below (in comparison to what we
would naively expect from the residue theorem).

Page 6



EPFL� Spring 2025

Series 8 MATH 207(c)�Analysis IV
G. Moschidis

8 Apr. 2025

In the lower half plane, the only pole of the integrand is −i In this case, as R → +∞, we get

� +∞

−∞
eiax

1

(1 + a2)(−a2 + 2ia+ 5)
da = −2πi

(
Resz=−i

(
eizx

1

(1 + z2)(−z2 + 2iz + 5)

))
= −2πi

(
i

16
ex
)

=
π

8
ex.

Combing the above and returning to (2), we get

y(x) =


1

8
e−x (2− cos(2x) + sin(2x)) , x ⩾ 0,

1

8
ex, x ⩽ 0.

Problem 4

Use properties of the Fourier transform to calculate the following:

(a) f(x) = eix

β2+σ2x2

Using the table of Fourier transforms, we have

F
[

1

x2 + β2

]
(a) =

√
π

2

1

|β
|e−|β||x|.

Thus, using the property of the Fourier transforms for rescalings, we get

F
[

1

σ2x2 + β2

]
(a) =

√
π

2

1

|β||σ|
e−

|β||x|
|σ| .

The multiplication by eix in physical space corresponds to a frequency shift by 1 in Fourier space.
Thus:

F [f ](a) = F
[

1

σ2x2 + β2

]
(a− 1) =

√
π

2

1

|σ||β|
e−

|β|
|σ| |a−1|

(b) g(x) = x2e−β2x2

We know from the table of Fourier transforms (but also from our earlier computation of the Fourier
transforms of Gaussian functions):

F [e−β2x2

](a) =
1√
2|β|

e
− a2

4β2
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Using the relation between the Fourier transform and di�erentiation, yielding F [x2f(x)](a) =
− d2

da2
F [f(x)](a):

F [g](a) = − d2

da2

(
1√
2|β|

e
− a2

4β2

)
Computing derivatives:

F [g](a) =
1√
2|β|

(
a2

4β4
− 1

2β2

)
e
− a2

4β2

(c) h(x) = x2−2x+1
(x2−2x+2)2

Notice that:
x2 − 2x+ 2 = (x− 1)2 + 1 and x2 − 2x+ 1 = (x− 1)2

Thus:

h(x) =
(x− 1)2

((x− 1)2 + 1)2

Let u = x− 1. Then:

h(u+ 1) =
u2

(u2 + 1)2

Thus, using the relation between the Fourier transform and translations:

F [h(x)](a) = e−ia ×
(
Fourier transform of

u2

(u2 + 1)2

)

For the Fourier transform of x2

(x2+1)2
, we can use the table of Fourier transforms attached in the

end of the exercises:

F
[

x2

(x2 + 1)2

]
(a) =

√
π

2

(
1

2
e−|a|(1− |a|)

)
Thus:

F [h(x)](a) =

√
π

2
e−iae−|a|

(
1− |a|

2

)

Problem 5

Laplace transforms:
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(a) f(t) = (t+ 1)3

Expand:
(t+ 1)3 = t3 + 3t2 + 3t+ 1

As we have proved in Exercise 4 from the 8th exercise sheet, if γ0 ∈ R is an abscissa of convergence
for L[h(t)], it is also an abscissa of convergence for L[tnh(t)] for any n ∈ N. In this case, since γ0 = 0
is an abscissa of convergence for L[1], it is also an abscissa of convergence for L[f(t)] = L[(t + 1)3];
note that

L[f ](z) = L[t3](z) + 3L[t2](z) + 3L[t](z) + L[1](z).
Using:

L[tn](z) = n!

zn+1
, L[1](z) = 1

z
Thus:

L[f ](z) = 6

z4
+

6

z3
+

3

z2
+

1

z

(b) f(t) = sin(ωt)

Since | sin(ωt)| ⩽ 1 (this holds since ω ∈ R), we expect 0 to be an abscissa of convergence for sin(ωt)
(since it is so for the constant function 1). Recall that the optimal abscissa of convergence captues the
asymptotic exponential growth (or decay) rate of a function as t → +∞. Indeed, for any γ > γ0 = 0,
we have � +∞

0

|f(t)|e−γt dt =

� +∞

0

| sin(ωt)|e−γt dt ⩽
� +∞

0

e−γt dt =
1

γ
< +∞,

so γ0 = 0 is an abscissa of convergence in this case.
Using directly the de�nition of the Laplace transform, we calculate for any z ∈ C with Re(z) >

γ0 = 0:

L[sin(ωt)](z) =
� +∞

0

sin(ωt)e−zt dt

=

� +∞

0

eiωt − e−iωt

2i
e−zt dt

=
1

2i

� +∞

0

(
e(−z+iω)t − e(−z−iω)t

)
dt

=
1

2i

([
e(−z+iω)t

−z + iω

]+∞

t=0

−
[
e(−z−iω)t

−z − iω

]+∞

t=0

)

=
1

2i

(
− 1

−z + iω
+

1

−z − iω

)
=

ω

z2 + ω2
.

In the above, the upper limits in the result of the integration vanish, i.e. limt→ e(−z±iω)t = 0, since
Re(z) > 0.
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(c) f(t) = t2 cos(ωt)

Similarly as in the case of sin(ωt) that we calculated above, we have that γ0 = 0 is an abscissa of
converegence for L[cos(ωt)]. Thus, it is also an abscissa of convergence for L[t2 cos(ωt)]. Moreover,
we can compute (similarly as in the case for sin(ωt)) for any z ∈ C with Re(z) > γ0 = 0:

L[cos(ωt)](z) =
� +∞

0

sin(ωt)e−zt dt

=

� +∞

0

eiωt + e−iωt

2
e−zt dt

=
1

2

� +∞

0

(
e(−z+iω)t + e(−z−iω)t

)
dt

=
1

2

([
e(−z+iω)t

−z + iω

]+∞

t=0

+

[
e(−z−iω)t

−z − iω

]+∞

t=0

)

=
1

2

(
− 1

−z + iω
− 1

−z − iω

)
=

z

z2 + ω2
.

Therefore

L[t2 cos(ωt)] =
(
− d

dz

)2

L[cos(ωt)](z) = 2(z2 − ω2)

(z2 + ω2)3
.

(d) f(t) = cosh(ωt)

Recall:

cosh(ωt) =
eωt + e−ωt

2

As we have seen in class, for any a ∈ R, γ0 = a is an abscissa of convergence for L[eat](z) and we
have

L[eat](z) = 1

z − a
.

Thus, γ0 = |ω| (namely the largest between +ω and −ω) is an abscissa of convergence for cosh(ωt)
and:

L[cosh(ωt)](z) = 1

2

(
1

z − ω
+

1

z + ω

)
=

z

z2 − ω2
(Re(z) > |ω|).

Problem 6

Convolution and Laplace transforms:
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(a) Extension to R

Extending f(t) and g(t) to be zero for t < 0, we have that f(s) = 0 for s < 0 and g(t − s) = 0 for
s > t. Therefore, f(s) · g(t− s) = 0 for s /∈ [0, t]. Thus,

(f ∗ g)(t) =
� +∞

−∞
f(s)g(t− s) ds =

� t

0

f(s)g(t− s) ds.

(b) Laplace transform of convolution

We compute

L[f ∗ g](z) =
� +∞

0

(f ∗ g)(t)e−zt dt

=

� +∞

0

(� t

0

f(s)g(t− s) ds

)
e−zt dt

=

� +∞

0

� t

0

f(s)g(t− s)e−zt dsdt

=

� +∞

0

� t

0

(
f(s)e−zs

) (
g(t− s)e−z(t−s)

)
dsdt.

We can now switch the order of integration: Noting that the region in the (s, t) plane over which we
are integrating is {0 ⩽ s ⩽ t} ∩ {0 ⩽ t < +∞} (i.e. the region between s = 0 axis and the diagonal
s = t), which can be equivalently expressed as {t ⩾ s} ∩ {0 ⩽ s < +∞}, we obtain that the above
integral is equal to � +∞

0

� +∞

s

(
f(s)e−zs

) (
g(t− s)e−z(t−s)

)
dtds.

Setting u = t− s, the above integral becomes

� +∞

0

� +∞

0

(
f(s)e−zs

) (
g(u)e−zu

)
duds =

(� +∞

0

f(s)e−zs ds

)
·
(� +∞

0

g(u)e−zu du

)
= L[f ](z)·L[g](s),

which proves the required result.
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